

铸造铝合金轮毂 T6 热处理工艺的优化研究

陈旷¹, 关绍康¹, 胡保健², 梁允勇³

(1. 郑州大学材料科学与工程学院,郑州 450002; 2. 三门峡戴卡轮毂制造有限公司, 三门峡 472000; 3.奇瑞汽车有限公司,芜湖 241009)

摘要: 研究了固溶时间、淬火停留时间及涂装烘烤工艺对 A356 合金铸造轮毂性能的影响规律并优 化了 T6 热处理工艺,将淬火停留时间缩短到 2h。 研究表明:未涂装时优化工艺使合金抗拉强度达到 240MPa;屈服强度达到 181MPa;延伸率达到 8%,涂装后抗拉强度达到 262MPa;屈服强度达到 179MPa;延伸率达到 9%,接近并达到目前国内 T6 工艺的强度性能,超过了国内轮毂行业的强度性能标准,具有一定的生产实际意义。

关键词: T6; 涂装烘烤; A356;淬火停留

中图分类号: 文献标识码: A 文章编号:

Optimize Research on T6 Heat-treatment of Aluminum

Cast Wheel

CHAN Kuang ¹, GUAN Shao-kang ¹, HU Bao-jian ², LIANG Yun-yong ³

(1.College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China;

2. Sanmenxia Die-cast wheel Ltd., Sanmenxia 472000, China; Chery Automobile Ltd., Wuhu 241009, China)

Abstract: The effect of solution treatment time , quenching waiting time and painting baking technology for properties of A356 cast wheel were studied and T6 technology was optimized, the quenching waiting time could be decreased from 6-8h to 2h. It was found that: the optimized technology could make the tensile strength reached to 240MPa; yield strength to 181MPa; the elongationg to 8% without painting technology. After painting, the tensile strength could be reached to 262MPa; the yield strength could be reached to 179MPa; the elongation to 9% . The result is closed or reaches the properties with T6 technology recently, exceeding the standard of properties of our country's standard of wheel industry, the result had some practical meaning.

Keywords: T6; painting baking; A356; quenching waiting

铝合金轮毂具有节油、真圆度好、散热性好、坚固耐用、外观美观和操作轻快等优点,作为钢制轮毂的良好替代品,已广泛应用于轿车和客车上。2000年世界铝合金轮毂需求量已达 1.1 亿只。权威人士预测¹¹,在未来十年内,我国轿车轮毂铝化率达到或接近发达国家 50%的水平,按照每辆轿车 5 轮(1 轮备用)和 50%的轮毂铝化率计算,并考虑到其他车辆及维修零售所用铝轮毂,预计 2010 年我国铝轮毂需求量将超过 1000 万只,2020 年将超过 18000 万只,因此铝合金轮毂市场潜力巨大。

作者简介: 陈旷(1979-),男,安徽安庆人,汉族,郑州大学材料科学与工程学院硕士研究生,研究方向: 高性能低压铸造 A356 铝合金轮毂的研究, 电话:13783716812; Email:chenk@gs.zzu.edu.cn

(注:与河南三门峡戴卡轮毂制造有限公司进行项目开发)

北京赛维美高科技有限公司

Beijing Savemation Technology Co. Ltd

中国加入 WTO 后,已成为世界第三大汽车制造国,2010年之前,中国的汽车产量将超过日本, 成为世界第二大汽车制造国,汽车产业的竞争将会更加激烈,随着汽车价格的下降及零件进口关税 的下降,必将造成铝合金轮毂市场价格的下降,因此,价格将是未来铝合金轮毂企业生存的关键^[2]。 近几年来,全国普遍电力紧张,2005年是自上世纪80年代以来,中国电力最为紧张的一年,今年 一季度,全国共24个省市拉闸限电,而铝合金轮毂企业是高耗能行业,电价的高低对轮毂价格影响 很大。为此,我们对铝合金轮毂 T6 热处理工艺进行了深入研究,由于热处理后铝合金需要经历一个 涂装烘烤工艺,也相当于对合金进行一个后续热处理过程。以往的研究,仅局限于合金 T6 工艺的研 究,因此作者研究了固溶时间、固溶停留时间及涂装烘烤工艺对合金力学性能和组织的影响,并在 研究基础上优化了 T6 热处理工艺。研究表明,优化热处理工艺后的合金力学性能能够接近并达到 T6 工艺性能,超过了目前国内 A356 合金低压铸造轮毂的标准(抗拉强度>214MPa;延伸率不低于 7%), 但比传统 T6 热处理工艺周期缩短了约 8h,大大节约了生产成本。

1 试验材料和试验方法

1.1 原材料和试验设备

原材料为 A356 合金锭、99.7%以上的工业纯铝、纯镁锭、1#结晶硅,变质剂采用 Al-10%Sr,细 化剂选用 Al-5Ti-1C, 配制成符合要求的合金成分, 其成分如表 1 所示; 试验设备及测试仪器: 5t 燃气炉,德国 GIMA 低压铸造机,SX-4-10 箱式电阻炉, WDW-50 微机控制电子万能试验机.

1.2 熔炼铸造工艺

熔炼在 5t 燃气炉中进行,熔炼温度为 740-770°C,精炼温度为 740-760°C,采用 CCl₄精炼,精 炼时间: 5-8min,静置时间: 10-15min,变质细化在中间包进行,其温度不低于720°C,加入变质 细化剂后,通氮精炼除气 15-20min,倒入低压铸造机进行铸造,铸造温度不低于 720°C,铸造成特 定规格的 A356 合金轮毂, 其化学成分见表 1。

表 1 A356 合金轮毂化学成分

合金元素	Si	Мg	Τi	Sr	Fе	Cu	Mn	Zn	A1
含量(%)	6.8-7.2	0. 30-0. 38	0. 08-0. 15	≤ 0. 018	≤ 0.18	≤ 0.1	≤ 0.1	≤ 0. 1	余量

1.3 热处理工艺的制定

A356 铸造轮毂热处理工艺为 T6 热处理,目前国内常见 T6 热处理工艺见表 2;固溶保温时间的 试验参数选择 0.5, 1, 2, 3, 4, 5, 6h; 淬火停留时间的试验参数选择 0.2.4.6.8.10.12h。

表 2 传统 T6 热处理工艺参数

固溶温度(°C)	保温时间(h)	淬火停留时间(h)	时效温度(°C)	时效时间(h)
540±3	6-8	6-10	180±5	4-6

A356 合金铸造轮毂在 T6 热处理后需要经过涂装工艺,在涂装中有一道烘烤工序,其也相当于热处理工序,模

拟烘烤热处理工艺进行了相关实验,其工艺试验参数为:一级涂装:温度:210°C,时间:20-25min;二级涂装:温度:160°C,时间:20-25min;三级涂装:温度:100°C,时间:20-25min。

1.4 力学性能测试和 DSC 分析

在轮毂上轮缘取样,制作成 5 倍的标准力学性能试棒,热处理后,在 WDW-50 微机控制电子万能试验机上进行力学性能测试,拉伸速率为 5mm/s;高温差热分析在 DSC 分析仪上进行,研究热处理后合金强化相和平衡相的析出转变温度和峰值的变化。

2、试验结果及分析

2.1 固溶保温时间力学性能和组织

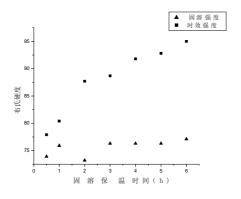


图 1、固溶保温时间对合金力学性能的影响

从图中,我们可以看出,合金固溶后的强度随着时间的延长增加不大,在 3 小时后,合金的固溶强度趋于稳定,说明固溶阶段中,由于硅相的溶入而引起的强度增加作用不是很大; 时效后,合金的强度随着固溶时间的增加非常明显,尤其是前 4 小时,4 小时后,合金的强度增长趋势变缓。

2.2 固溶停留时间力学性能

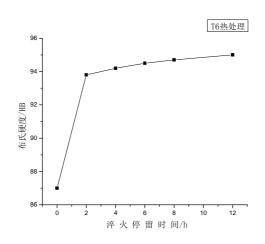


图 2、淬火停留时间对合金力学性能的影响

淬火停留时间试验结果表明,淬火停留时间对 T6 热处理 A356 合金的强度有一定的影响,当淬火

停留时间为 2 小时,合金的硬度急剧增加,2 小时后,合金的硬度有所增加,但增加较为缓慢。文献 3 对 Al-Mg-Si 合金固溶后停留时间对合金时效强度进行了实验研究,结果发现合金淬火停留时间在 0-12 小时之间,合金的强度增加十分迅速,文献认为自然时效促使了合金固溶后 GP 区变成了强化相 β ′相 的形核部分,使人工时效后析出的 Mg₂Si 相数量增加,从而增加了合金时效后的硬度。文献^[4]认为铸造 A356 合金轮毂的淬火停留时间为 6-10h 最佳,但研究表明,淬火停留时间为 2h 即可达到较为理想的强度性能。

2.3 涂装工艺对合金力学性能的影响

研究了涂装烘烤工艺对合金强度性能和延伸率的影响,强度性能结果见图3,延伸率见表3.

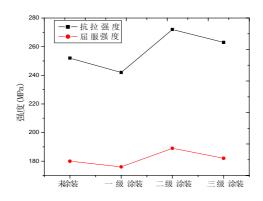


图 3. 涂装烘烤工艺对 T6 热处理 A356 合金强度性能的影响

表 3 涂装烘烤工艺对 T6 热处理 A356 合金强度性能的影响

工艺类别	延伸率(%)				
工乙尖別	未涂装	一级涂装	二级涂装	三级涂装	
T6 工艺	9	9	9	10	

结果表明,涂装烘烤工艺能够在一定程度上提高合金的强度性能,对合金的延伸率没有太大的影响.涂装工艺对抗拉强度和屈服强度的影响趋势是一致的,一级涂装后,合金的强度性能降低,二级涂装后,强度性能大大增加,三级涂装后,合金的强度性能又有所降低.

对 A356 合金在固溶状态、T6 工艺及三级涂装工艺进行 DSC 分析,见图 3 所示,

北京赛维美高科技有限公司

Beijing Savemation Technology Co. Ltd

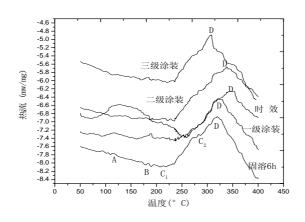


图 3. 不同热处理工艺下 A356 合金 DSC 曲线

文献^[5]研究 A356 合金屈服强度模型时指出,硅在 α —A1 中的固溶度在 0.5%—1. 2%之间,由于硅的固溶产生屈服强度增加不超过 2—3MPa。关于 A1—Mg—Si 合金的强化机理,文献^[6-8]认为,合金的脱溶序列为过饱和 α 固溶体—GP 区— β "相— β "相— β 相,当形成 GP 区时,GP 区与基体在边界附近产生弹性应变,阻碍了位错运动,提高合金的强度;随着时效时间的延长,GP 区迅速长大成针状或棒状即为 β "相,其 C 轴方向的弹性共格结合引起的应变场最大,它的弹性应力也最高,当 β "相长大到一定的尺寸,它的应力场遍布整个基体,应变区几乎相连,此时合金的强度较高;在 β "相的基础上,Mg、Si 原子进一步富集形成局部共格的 β "过渡相,其周围基体的弹性应变达到最大值,强度有所下降;当形成稳定的 β 相时,失去了与基体的共格关系,共格应变消失,强度相比有所下降。因此,合金强度的变化应主要归结为其沉淀析出相之间的转变。

对 A356 合金固溶 DSC 曲线进行分析,其中 A 点为 GP 区析出峰,B 点为 B "相析出峰,C₁、C₂为 B '析出峰,D 为 B 平衡相析出峰。比较固溶和时效 DSC 曲线, B "和 B '析出温度基本一样,但时效 DSC 曲线 B "峰值明显高于固溶 DSC 曲线,时效曲线 B 相析出温度增加,因为时效工艺有利于强化相 B "和 B '相的析出,从而阻碍了平衡相 B 的析出。一级涂装曲线 B 相的析出温度降低,相比一级涂装,二级涂装曲线 B 相的温度增加,而三级涂装 B 相的析出温度又有所降低,且三级涂装 B 相析出峰值明显增加,而 B "和 B '相的峰值明显弱化。在 A356 合金中,合金的强度增加主要来自于 B "和 B '相的沉淀强化,而平衡相对合金的强度没有贡献。时效后,合金强度增加,由于时效过程中形成了大量弥散的 B "和 B '相,一级涂装后,有利于 B "和 B '相向平衡相 B 相的转变,强化相数量降低,从而使合金强度降低;二级涂装后,合金强度增加可能是因为二级涂装阻碍 B "和 B '相向平衡相 B 相的转变,而固溶体中空位和位错的释放使强化相增加的缘故;三级涂装后,合金平衡相 B 相大大增加, B "和 B '相的数量减少,从而使合金的强度有所降低。

2.4 优化 T6 工艺试验结果

根据上述试验结果,对 T6 工艺进行优化,温度参数不变,固溶保温时间 6h,淬火停留时间 2h,时效时间 4h 进行试验,并与 T6 工艺进行对比分析,见表 4。

表 4 T6 工艺与优化工艺结果对比

工艺参数	抗拉强度/MPa	屈服强度/MPa	延伸率/%	
未涂装	252	180	9	

工	一级涂装	242	176	9
艺	二级涂装	272	189	9
	三级涂装	267	182	10
T6	未涂装	240	181	8
优化	一级涂装	230	174	10
工艺	二级涂装	265	183	10
	三级涂装	262	179	9

未涂装和涂装工艺状态下, 优化工艺的强度性能稍逊于 T6 工艺, 三级涂装工艺后, 缩小了两种工艺强度性能的差距, 涂装后 T6 优化工艺性能明显高于 T6 工艺未涂装时的性能. T6 优化工艺强度性能已完全达到并超过现国家轮毂行业强度性能标准。

3、结论

- 1、A356 合金在固溶阶段增加的强度性能并不明显,随着固溶时间的延长,合金的布氏硬度 73.9 增加到 77.1. 时效后,合金的固溶时间对布氏硬度的影响十分明显,由开始的 77.1 增加到 94,固溶时间在 0-4 小时增加较为明显,4 小时后增加趋势变缓。
- 2、淬火停留时间 0-2h, 合金的强度增加较为明显, 2h 后合金强度性能增加变缓, 合金强度的增加是因为自然时效促使了合金固溶后 GP 区变成了强化相 β′相的形核部分, 使人工时效后析出的 Mg₂Si 相数量增加, 从而增加了合金时效后的硬度。
- 3、涂装烘烤工艺能够在不影响合金延伸率的前提下,一定程度的提高合金的强度性能,尤其是抗拉强度,涂装工艺后,两种工艺下合金的抗拉强度增加了 15-20MPa,屈服强度增加并不明显. DSC 分析认为涂装工艺通过改变强化相 β ″和 β ′相和平衡相 β 相的转变温度和分布数量来强化合金的强度性能。
- 4、 T6 优化工艺涂装烘烤处理后合金的性能接近并达到传统 T6 工艺,达到并超过了目前国内 A356 低压铸造轮毂行业的标准。

对于目前竞争激烈的铸造 A356 合金轮毂行业,T6 优化工艺的推广和应用具有一定的实际意义.

参考文献:

- [1] 张广安, 吴树迎. 轿车铝合金轮毂的液态模锻[J]. 锻压技术, 1999, (3): 33-34
- [2] 史自力 中国汽车铝轮毂行业发展前景分析[J]. 经济经纬 2004, (3): 61-64
- [3] 邓苏莲译. AlMgSi 和 AlMgSiMn 合金自然时效和人工时效之间的关系[J]. 铝加工 1986,(1): 26-27
- [4] 李友川, 胡之亮 铸造铝合金轮毂热处理参数选择及其设备[J] 轻合金加工技术 1997,(25): 33-39
- [5] P. A Romestch G. B. Schaffer, An age harden model for Al-7Si-Mg casting alloys[J].Materials Science and Engineering A325(2002) 424-434
- [6] 王孟君 6063 铝合金时效工艺的研究[J]. 金属热处理, 1998,(8):24
- [7] 颜建辉 热处理工艺对 6063 铝合金强度和导电率的影响. 热加工工艺, 2004(2):49
- [8] Rafiq A. Siddiqui Influence of aging parameters on the mechanical properties of 6063 aluminum alloy[J]. Journal of Materials Processing Technology102(2000):234-240